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The authors suggest approximate methods for calculating the temperature fields in inhomogeneous
media in a general one-dimensional case that are based on replacement of inhomogeneous medium by
a quasihomogeneous one with effective heat-transfer coefficients.

1. In creating and using various power installations and heat exchangers and in thermophysical meas-
urements and analysis of problems of cooling radioelectronic equipment, determination of the nonstationary
temperature field in the corresponding inhomogeneous media is of great importance. The difficulties that arise
in solving this problem are widely known [1-6]. Therefore, methods that are based on introduction of effective
heat-transfer coefficients turn out to be very fruitful here [4-7].

2. The temperature of an inhomogeneous medium in a general one-dimensional case is determined by
the system of equations

 
∂
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κ (x) x1−2ν 
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∂x




 + qv (x, t) = C (x) x1−2ν 

∂T

∂t
 , (1)

κ (x) 
∂T

∂x
 + α1 (T − T1) = 0 ,   x = R0 , (2)

κ (x) 
∂T

∂x
 + α2 (T − T2) = 0 ,   x = R , (3)

T (x, 0) = Tin (x) . (4)

To solve this problem, we will use methods that are based on introduction of effective thermophysical charac-
teristics.

3. We introduce the variable Π(x) = ∫ 
0

x
√ c(x)
√κ(x)

dx. Using the WKB (Wentzel−Kramers−Brillouin) approxi-

mation [8], i.e., assuming that √ c(x)  ⁄ √κ(x)  is a weakly varying function of the coordinate, after separation of
variables in Eq. (1) and with qv = 0 we obtain

d2T
__

dΠ2 + 
(1 − 2ν)

Π
 
dT
__

dΠ
 + λ2T

__
 = 0 . (5)
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Here the boundary conditions are transformed to the form

dT
__

dΠ
 + 

α1

dΠ
dx

 (T
__

 − T1) = 0 ,   Π = 0 ;

dT
__

dΠ
 + 

α2

dΠ
dx

 (T
__

 − T2) = 0 ,   Π = Π (R) . (6)

In this case, the solution of Eq. (5) for α1 = 0 has the form [9-11]

ν = 
1
2

 ,   T
__

 = A cos λ Π (x) ; (7)

ν = 0 ,   T
__

 = AJ0 (λ Π (x)) ; (8)

ν = − 
1
2

 ,   T
__

 = A 
sin λ Π (x)

Π (x)
 .

(9)

The coefficients in Eqs. (7)-(9) and the sought solution in relation to the specific conditions for the supply and
removal of heat can be found, for example, by the method of eigenfunctions [9]. In our case,

T (x, t) - T2 +  ∑ 

n=1

∞
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  ∫ 
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
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


 ×
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2 t) + F (x, t) , (10)
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Π(R)

  
z1−2ν qv (z, τ)

C (z)
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


 , (11)

where

&Yn
1
2
 &2 = 
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
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µ
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
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n
1
2
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 ;   Bi = 
α2 √ a (R)  Π (R)

κ (R)
 ;

&Yn0 &2 = 
Π2 (R)

2
 [J0

2 (µn0) + J1
2 (µn0)] ,   a = 

κ
C

 ;

&Yn(−1 ⁄ 2) &
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

µn(−1 ⁄ 2) + Bi2 − Bi


 Π (R)

2 

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2  + (Bi − 1)2


 .

When α2 = 0, this solution must be complemented by the following term:
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∫ 
0

R

x1−2ν [Tin (x) − T2] C (x) dx

∫ 
0

R

x1−2ν C (x) dx

 .

The eigenvalues µnν are determined from the characteristic equations

ν = 
1
2

 ,   µ tan µ = Bi ; (12)

ν = 0 ,   J0 (µ) Bi = µn J1 (µ) ; (13)

ν = − 
1
2

 ,   µ ctan µ + Bi − 1 = 0 , (14)

which are tabulated in [9-11], λn eff
2  = µn

2 aeff
 ⁄ R2, and aeff = R2 ⁄ Π2(R) is the effective thermal-diffusivity coef-

ficient. Similar relations can also easily be obtained for α1 ≠ 0.
4. To introduce the effective thermal-diffusivity coefficient of inhomogeneous media, use can also be

made of the sum rule for the eigenvalues of initial problem (1)-(4). Introducing the variable η according to the
formulas (R0 ≥ 0)

η = 
1

YL

 ∫ 
1

z
dY

Y1−2ν κ (Y)
 ,   YL = ∫ 

1

K
dY

Y1−2ν κ (Y)
 ,   z = 

x

R0

 ,   K = 
R

R0

 , (15)

and separating variables in the homogeneous equation, we obtain

d2T
__

dη2 + λ2R0
2YL

2 z2(1−2ν) ρ (η) T
__

 = 0 . (16)

For approximate determination of the eigenvalues λn, we use the following sum rule [12]:

  ∑ 
n=1

∞

 
1

λn
2 = YL

2 R0
2 ∫ 

0

1

G0 (η, η) ρ (η) z2(1−2ν) (η) dη , (17)

where G0(x, y) is the Green function for Eq. (16) with the corresponding boundary conditions for λ → 0; this
function is determined in general by the solution of the equation

d
dx

 

σ 

dG
dx




 = − δ (x − y) (18)

and has the form [12]

G0 (η, η) = 




η − 

1

α
__

1




 

1 − η + 

1

α
__

2





1 + 
1

α
__

2

 − 
1

α
__

1

 .
(19)
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The initial problem can be reduced approximately to a quasihomogeneous one, so that

1

λn
2 - 

1

λneff
2  = 

1

µn
2 ρeff 

YL
2

YL0
2  = 

1

µn
2aeff

 ,   YL0 = 
K2ν − 1

2ν
 , (20)

here µn are the eigenvalues of the equivalent problem with properties that are independent of the coordinate,
i.e., 

d2T
__

dη2 + µ2 R0
2 YL0

2  [1 + η (K2ν − 1)]
1−2ν

ν  T
__

 = 0 , (21)

with

  ∑ 
n=1

∞

 
1

µn
2 = YL0

2  R0
2 ∫ 

0

1

G0 (η, η) [1 + η (K2ν − 1)]
1−2ν

ν  dη . (22)

Then, substituting Eq. (20) into Eq. (17) and taking into account Eq. (22), for ρeff we will have

ρeff = 

∫ 
0

1

G0 (η, η) ρ (η) z2(1−2ν) dη

∫ 
0

1

G0 (η, η) [1 + η (K2ν − 1)]
1−2ν

ν  dη

 =

= 

2YL0 (1 − ν) ∫ 
0

1

G0 (η, η) ρ (η) z2(1−2ν) (η) dη

G0 (1, 1) K2(1−2ν) − G0(0, 0) − 
1

2YL0

 [G0
′  (1, 1) K2 − G0

′ (0, 0)] + 
K2(1+ν) − 1

4YL0
2  (1 + ν)

 G0
′′  (η, η)

(23)
and correspondingly

λneff = µn 
YL0

YL

 
1

√ ρeff

 = µn √ aeff  . (24)

From the last relations it is easy to obtain a number of known cases; in particular, for ν = 1/2 and ρ(η) = ρ0

= const, we have ρeff = ρ0; for α1 → ∞, α2 = 0, and ν = 1/2, we have the result from [5] for αeff. This
approach allows us to introduce the effective space coordinate

Π (η) = 
η

√ ρeff

 


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







∫ 
0

η

G0 (η, η) ρ (η) z2(1−2ν) (η) dη

∫ 
0

η

G0 (η, η) [1 + η (K2ν − 1)]
1−2ν

ν  dη













1 ⁄ 2

 , (25)

here the boundary conditions (6) take the form

1320













dT
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dΠ
 + 

α
__

1





dΠ
dη





 (T
__

 − T1)









Π=0

 = 0 ,   










dT
__

dΠ
 + 

α
__

2





dΠ
dη





 (T
__

 − T2)









Π=1

 = 0 , (26)

where





dΠ
dη



  0

 = 




ρ (0)
ρeff





1 ⁄ 2

 ; (27)

dΠ
dη

 = 1 + 
1
2

 
G0 (1, 1) K2(1−2ν)

∫ 
0

1

G0 (η, η) [1 + η (K2ν − 1)
1−2ν

ν  dη

 




ρ (1)
ρeff

 − 1



 ,   η = 1 . (28)

5. As an example, we consider the change in the temperature field in a multilayer solid cylinder (R0 =
0 and α1 = 0) with a constant initial temperature Tin and removal of heat from the side surface. The tempera-
ture distribution is determined by the formula

Θ = 
T − T2

Tin − T2

 = 2 Bi
~

  ∑ 
n=1

∞

 
J0 (µn Π (x)) exp (− λnefft)

(µ~n
 2 + Bi

~  2) J0 (µ~n)
 , (29)

where in applying the WKB method (ν = 0)

µn = 
µ~n

Π (R)
 ,   λneff

2  = 
µ~n

 2 aeff

R2  ,   aeff = 
R2

Π2 (R)
 ,

µ
~

n is determined from the dispersion equation (13),

Bi = Bi
~

 = 
α2 √ a (R)  Π (R)

κ (R)
 ,

and in using the sum rule for the eigenvalues

Fig. 1. Relative temperature vs. time. t, sec.
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µ~n = µn ,   λneff
2  = 

µ~n
 2 aeff

R2  ,   aeff = 

R2 


1
α2R

 + 
1

2κ1




 κ1

∑ 

i=1

N

 Ci (xi
2 − xi−1

2 ) 


1
α2xN

 + 
1

2κi





 ,

µn is determined from Eq. (13) upon the substitution of Bi
~

 for Bi:

Bi
~

 = α2 




dΠ
dη



 1

−1

 = 










α2R (2κ1 + α2R)

2κ1
2 





ρ (1)
ρeff

 − 1














 ,   ρeff = 
κ1

2

aeff
 .

Figure 1 presents the temperature Θ at different instants of time for a two-layer cylinder with R0 = 0:
the solid line denotes the exact solution, the dashed line denotes the WKB method, and the points indicate use
of the sum rule. A comparison of these results allows us to recommend the suggested methods for engineering
calculations of the temperature fields in compound bodies.

The authors express their gratitude to L. K. Nikonenko for his help in performing the numerical calcu-
lations.

NOTATION

κ, αi, and C, thermal-conductivity and heat-transfer coefficients and volumetric heat capacity; ν = 1/2,
corresponds to a plane case; ν = 0, corresponds to a cylindrical case; ν = −1 ⁄ 2, corresponds to a spherical
case; ρ(η) = C(η)κ(η); α

__
1 = α1YLR0; α

__
2 = α2YLR0K(1−2ν); K = R ⁄ R0; YL0 = (K2ν − 1)/ 2ν; ρeff, effective value

of ρ(η); aeff, effective thermal diffusivity; Tin(x), initial temperature of the system.
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